
L 2 M E T H O D S A N D
VA N I S H I N G T H E O R E M S

valerio proietti

contents
1 Preparation 1

1.1 Kähler manifolds 2

1.2 Analysis on vector bundles 3

2 L2 estimates 6

3 Vanishing theorems 10

References 11

introduction

The aim of the present exposition is to give a brief introduction of L2 methods
in complex geometry. This is nothing more than a summary of material from
[Dem+96] and [Hör90]. The paper is organised as follows.

The first section is just a very quick revision of the fundamentals of Kähler ge-
ometry and elliptic differential operators. It is assumed that the reader is already
familiar with the results presented; in particular, results such as Gårding inequality,
the finiteness theorem and (extended) commutation relations are not proved.

The central result of the second section is an L2 existence theorem for the D′′-
equation. The proofs in this section are not straightforward, they are the core of the
exposition and require the reader to have some prerequisites in functional analysis.

In the third part, applications of L2 estimates are presented. After having intro-
duced the reader to positivity concepts for vector bundles, we give a brief descrip-
tion of the “philosophy” behind the Levi problem and we present proofs for three
celebrated vanishing theorems (Nakano, Cartan B, Kodaira-Serre).

1 preparation

As the name “L2 methods” suggests, our aim is to find a suitable Hilbert space to
work on. Since we will mainly deal with applications in cohomology, it is natural to
build this space as a subspace of the (p, q)-forms. In this section, we will explain in
detail this process and recall other basic facts about Kähler geometry and operators
on manifolds.

Some of the results presented in the paper still hold in the more general case of
hermitian manifolds. In the Kähler setting the proofs are essentially unchanged,
but the computations involved are simpler.
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1.1 Kähler manifolds

We start with some basic remarks in linear algebra.
Let V be a real vector space of dimension 2n equipped with a linear complex

structure J (i.e., J2 = −1). We can take the complexification VC = V⊗C and extend
J in such a way that v⊗ z 7→ (Jv)⊗ z, when v ∈ V and z is a complex number. We
also have conjugation in VC: simply set v⊗ z = v⊗ z̄.

We have a direct sum decomposition in eigenspaces of J. Hence, we can write
VC = V(1,0) ⊕ V(0,1), where V(1,0) stands for the i-eigenspace. Clearly, V(0,1) =

V(1,0). Using J, we can build a complex n-dimensional vector space VJ , by setting
(a + Jb)v = (a + ib)v, for v ∈ V and a, b ∈ R.

It is not difficult to see a complex isomorphism between VJ and V(1,0), given by
the map v 7→ 1

2 (v− i Jv). Analogously, VJ is identified with V(0,1), therefore we have
a second decomposition V ∼= VJ ⊕VJ .

The space of r-forms of VC admits a decomposition in (p, q)-forms:

Λr(VC) =
⊕

p+q=r
Λp,q(VJ) =

⊕
p+q=r

Λp(VJ)⊗Λq(VJ).

We see that a (p, q)-form ω can be defined in two equivalent ways:

• ω is a real multilinear map VJ → C which is complex linear alternating in the
first p terms and conjugate linear alternating in the last q terms;

• ω is a complex multilinear alternating map VC → C, which vanishes on ho-
mogeneous elements unless p are from V(1,0) and q are from V(0,1).

Let W, W ′ be complex vector spaces equipped with hermitian products B, B′. We
can define a hermitian product on the tensor product W ⊗W ′ by setting

B̂(v⊗ v′, w⊗ w′) = B(v, v′) · B′(w, w′) v, w ∈W and v′, w′ ∈W ′.

Moreover, B induce an isomorphism W∗ ∼= W.
If a hermitian product H is defined on VJ , we can extend it to VJ simply setting

H(v̄, w̄) = H(v, w). We use the map φ : TVJ → ΛVJ , and define

v1 ∧ · · · ∧ vp
φ7→ ∑

σ∈Sp

(−1)σvσ(1) ⊗ · · · ⊗ vσ(p)

H(ν, ω) = H(φ(ν), φ(ω)) ν, ω ∈ ΛpVJ .

As a consequence of these definitions, H is also defined on Λp,qVJ .
If (X, h) is an n-dimensional hermitian manifold, its real cotangent space to a

point is to be thought as V. The corresponding fiber of the holomorphic cotangent
bundle T∗X is then identified with VJ . In local holomorphic coordinates (zα) the
metric h can be written (using Einstein notation)

h = hαβ dzα ⊗ dz̄β

where (hαβ) is a hermitian matrix.
The real part of h defines a riemannian metric g = 1

2 (h + h̄) on the underlying
real manifold. The complexification of g, defined on TMC, in local coordinates is
written as

g =
1
2

hαβ (dzα ⊗ dz̄β + dz̄β ⊗ dzα).

Analogously, the negative imaginary part of h, defines a (1, 1)-form Ω = i
2 (h− h̄),

Ω =
i
2

hαβ dzα ∧ dz̄β.
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When Ω is closed, we say that X is a Kähler manifold. Remember that the canonical
volume form given by g is given in terms of Ω by

Ωn

n!

and induces a measure which we will denote dV.

1.2 Analysis on vector bundles

Let E be a complex vector bundle of rank r with hermitian structure h′. Then
we can define a product on the space M(X, Λp,qT∗X ⊗ E) of E-valued measurable
(p, q)-forms by integration on X:

〈ν, ω〉 =
∫

X
ĥ(ν, ω) dV.

Finally, we can build the Hilbert space

L2(X, Λp,qT∗X⊗ E) = {ω ∈ M(X, Λp,qT∗X⊗ E) | ‖ω‖2 = 〈ω, ω〉 < ∞}.

Let (F, h′′) be a hermitian bundle of rank r′ on X. We denote smooth sections
by C∞(X, F). Recall that a (linear) differential operator of degree δ is a C-linear
operator P : C∞(X, E)→ C∞(X, F) of the form

Pu(z) = aα(z)Dαu(z) |α| ≤ δ

where E, F are locally trivialised on some open chart U ⊆ X with coordinates z =
(z1, . . . , zn), aα are r′ × r-matrices with smooth coefficients on U, Dα stands for

∂α1+···+αn

∂xα1
1 · · · ∂xαn

n

and u, Dαu are viewed as column r-vectors.
If t ∈ C is a parameter, f ∈ C∞(X, C), u ∈ C∞(X, E), a simple calculation shows

that
e−t f (z)P(et f (z)u(z)) = tδσP(z, d f (z)) · u(z) + lower order terms

is a polynomial of degree δ in t, where σP is a homogeneous polynomial map
T∗X → Hom(E, F) defined by

T∗x X 3 ξ 7→ σP(x, ξ) ∈ Hom(Ex, Fx), σP(x, ξ) = ∑
|α|=δ

aαξα.

The map σP is called the principal symbol of P, it is a smooth function in (x, ξ) and
does not depend on coordinates or trivialisations.

The formal adjoint of P is the unique operator P∗ : C∞(X, F) → C∞(X, E) satisfy-
ing

〈Pu, v〉 = 〈u, P∗v〉

for sections u, v such that Supp u ∩ Supp v b X. It is easy to see that

σP∗(x, ξ) = (−1)δσP(x, ξ)∗.

By computing P in the sense of distributions, we get the maximal (hilbertian) ex-
tension PH : L2(X, E)→ L2(X, F), whose domain is formed by sections u ∈ L2(X, E)
such that PHu is in L2(X, F).

Since PH is closed and densely defined, we can consider its Hilbert adjoint (PH)∗

(which is still closed and densely defined). The relationship between the formal and
Hilbert adjoint is given by

Dom(PH)∗ ⊆ Dom(P∗)H.
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The operator P is said to be elliptic if σP(x, ξ) is injective for every x ∈ X and
ξ ∈ T∗x X r {0}. In the sequel, the notation Hs will be used to denote the s-th
Sobolev space.

The following theorems lay the basis of elliptic PDE theory and Hodge theory.

Theorem 1 (Gårding). Suppose E, F have equal rank and let P̃ denote the extension of P
in the sense of distributions. Then, for every u ∈ H0(X, E) such that P̃u ∈ Hs(X, F), it
holds u ∈ Hs+δ(X, E) and

‖u‖s+δ ≤ Cs(‖P̃u‖s + ‖u‖0)

where Cs is a constant depending exclusively on s.

Theorem 2 (finiteness). In the same hypothesis of the preceding theorem, it holds:

• Ker P is of finite dimension;

• Ran P = P(C∞(X, E)) is closed and finite-dimensional in C∞(X, F).

Moreover, the following decomposition is true:

C∞(X, F) = Ran P⊕Ker P∗

where the sum is orthogonal in H0(X, F).

We briefly recall the basic properties of Chern connection. A connection is a
C-linear differential operator

D : C∞(X, ΛrT∗X⊗ E)→ C∞(X, Λr+1T∗X⊗ E)

satisfying the Leibniz rule

D(ω ∧ s) = dω⊗ u + (−1)sω ∧ Du

for all ω ∈ C∞(X, ΛsT∗X), u ∈ C∞(X, ΛrT∗X⊗ E).
Clearly, we can split D in a unique way as a sum of the (1, 0) and (0, 1) part:

D′ : C∞(X, Λp,qT∗X⊗ E)→ C∞(X, Λp+1,qT∗X⊗ E)

D′′ : C∞(X, Λp,qT∗X⊗ E)→ C∞(X, Λp,q+1T∗X⊗ E).

In a local trivialisation given by a smooth frame, one can write

Du = du + Γ ∧ u

D′u = d′ + Γ′ ∧ u

D′′u = d′′u + Γ′′ ∧ u

where d acts componentwise (d is the exterior derivative and d′, d′′ its (1, 0) and
(0, 1) parts, i.e., d = d′ + d′′), and Γ = Γ′ + Γ′′ is a matrix of local 1-forms.

We say that D is hermitian if Γ′ = −(Γ′′)∗ in any orthonormal frame. Thus, a
hermitian connection is completely determined by its (0, 1) part.

When E is a holomorphic vector bundle, we can extend d′′ by requiring that it
acts componentwise on local trivialisations; setting D′′ = d′′ uniquely determines
a connection, called the Chern connection. From now on D will always denote the
Chern connection.

The Chern curvature is just D2. On a local trivialisation, one checks

D2 = (dΓ + Γ ∧ Γ)u,

hence there exists a matrix of global 2-forms Θ such that

D2u = Θ ∧ u.
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As a consequence of the definition of D, we have

D2 = D′D′′ + D′′D′

iΘ ∈ C∞(C, Λ1,1T∗X⊗Herm(E, E)).

For later use, we note that by the isomorphisms T∗X ∼= TX, E∗ ∼= E, we can identify
the curvature tensor to a hermitian form Θ̃ on TX⊗ E.

Finally, we define the Laplace-Beltrami differential operator to be

∆ = DD∗ + D∗D.

In order to check that it is an elliptic operator, we introduce vector field contraction:

θyω(η1, . . . , ηr−1) = ω(θ, η1, . . . , ηr−1)

where θ, η1, . . . , ηr−1 ∈ TX are tangent vectors and ω ∈ ΛrT∗X is an r-form. Note
that if θ̃ = h(·, θ) ∈ T∗X, the operator θy · is the adjoint of θ̃ ∧ ·. For all smooth
functions f , Leibniz rule yields

σ
−t f
e D(et f s) = t d f ∧ s + Ds.

Hence, by definition, we find

σD(x, ξ) · s = ξ ∧ s, ∀ξ ∈ T∗x X, ∀s ∈ ΛrT∗X⊗ E.

We obtain σD∗ = −(σD)
∗, therefore

σD∗(x, ξ) · s = −ξ̃y s.

The equality σDσD∗ + σD∗σD implies

σ∆(x, ξ) · s = −ξ ∧ (ξ̃y s)− ξ̃y (ξ ∧ s) = −(ξ̃y −−− ξ)s

σ∆(x, ξ) · s = −h(ξ, ξ)s = −|ξ|2s

which concludes the proof of the ellipticity of ∆.
One can also prove ellipticity for the variants

∆′ = D′D′∗ + D′∗D′,

∆′′ = D′′D′′∗ + D′′∗D′′.

We conclude the section with a useful theorem on commutation identities, whose
proof relies on the properties of y and on the possibility to choose a convenient
coordinate system around a point.

Remember that an operator C∞(ΛrT∗X⊗ E)→ C∞(Λr+sT∗X⊗ E) is said to have
degree s. The following notation for operators A, B of degree a, b will be used:

[A, B] = AB− (−1)abBA.

A simple computation shows that the Jacobi identity is valid for [·, ·].

Theorem 3 (commutation relations). Define the operator L by Lu = Ω ∧ u, and set
Λ = L∗. Then, it holds:

[D′′∗, L] = iD′, [D′∗, L] = −iD′′,

[Λ, D′′] = −iD′∗, [Λ, D′] = iD′′∗.
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2 L2 estimates

The goal of this section is to prove a central L2 existence theorem, which is essen-
tially due to Hörmander. The proofs presented are rather technical, but an effort
has been made to clean up the exposition.

The reader is supposed to know the basics of functional analysis (e.g., the Hahn-
Banach theorem), riemannian geometry (e.g., the Hopf-Rinow theorem) and some
standard facts about plurisubharmonic functions. Moreover, we will freely use the
knowledge provided by the previous chapter.

Some of the proofs below are completed by means of a regularisation argument.
Basically, one needs to use convolution with regularising kernels, possibly after
using a partition of unity argument, so as to divide the support of some interesting
function. This is the only case in which details are skipped, as we feel this process
is quite standard, and does not add anything “new” to the ideas presented.

Theorem 4 (Bochner-Kodaira-Nakano). If X is a Kähler manifold, the complex Laplace
operators ∆′ and ∆′′ acting on E-valued forms satisfy the identity

∆′′ = ∆′ + [iΘ, Λ].

Proof. The last commutation identity yields D′′∗ = −i[Λ, D′], hence

∆′′ = [D′′, D′′∗] = −i[D′′, [Λ, D′]].

By means of the Jacobi identity, we get

[D′′, [Λ, D′]] = [Λ, [D′, D′′]] + [D′, [D′′, Λ]] = [Λ, Θ] + i[D′, D′∗].

To conclude, just remember that [D′, D′′] = D2 = Θ.

Theorem 5 (basic a priori inequality). Assume that X is compact. The following inequal-
ity holds:

‖D′′u‖2 + ‖D′′∗u‖2 ≥
∫

X
ĥ([iΘ, Λ]u, u) dV.

Proof. If u ∈ C∞(X, Λp,qT∗X⊗ E) is an arbitrary (p, q)-form, an integration by parts
yields

〈∆′u, u〉 = ‖D′u‖2 + ‖D′∗u‖2 ≥ 0

and similarly for ∆′′, hence by using the result above we obtain

‖D′′u‖2 + ‖D′′∗u‖2 = ‖D′u‖2 + ‖D′∗u‖2 +
∫

X
ĥ([iΘ, Λ]u, u) dV.

Lemma 6. We denote by δ the geodesic distance of X. The distance δ is complete if and
only if all balls B(x0, r) = {x ∈ X | δ(x, x0) ≤ r} are compact. Moreover, under these
hypotheses, there exists a sequence of compact sets Kν with X =

⋃
Kν and Kν ⊆ K◦ν+1, and

a sequence of cut-off functions ψν such that |dψν| ≤ 1, ψν = 1 on Kν and Supp ψν ⊆ Kν+1.

Proof. The first part of the statement derives from the Hopf-Rinow theorem. For the
second part, set Kν = B(x0, 3ν) and define ψν by

ψν = θ(3−νd(x0, x))

where θ : R→ R is a smooth function with (for example)

− 9
10
≤ θ′ ≤ 0

θ(t) = 1 t ≤ 1 +
1

10

θ(t) = 0 t ≥ 3− 1
10
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Since the distance function x 7→ δ(x0, x) is a 1-Lipschitz function, it is almost every-
where differentiable, with a differential of norm ≤ 1, hence we get

|dψν| ≤ 1− 1
10

.

Now, in order to get ψν smooth, we need to take convolution with regularising
kernels.

Lemma 7. Assume that δ is complete. For every form with measurable coefficients u ∈
M(X, Λp,qT∗X⊗ E) such that

u ∈ L2, D′′u ∈ L2, D′′∗u ∈ L2

there exists a sequence of smooth forms uν with compact support, such that

uν → u, D′′uν → D′′u, D′′∗uν → D′′∗u

in L2 sense.

Proof. Let us denote by ψν a sequene of cut-off functions as provided by the preced-
ing lemma. If u ∈ L2 and D′′u ∈ L2, then ψνu ∈ L2 and it holds that

D′′(ψνu) = ψνD′′u + d′′ψν ∧ u ∈ L2.

Moreover, since ψν → 1 and |d′′ψν| → 0 pointwise with 1 as uniform bound, by
Lebesgue’s bounded convergence theorem we find

ψνD′′u→ D′′u, d′′ψν ∧ u→ 0

in L2 sense. By adjunction, provided that D′′∗u ∈ L2, we can conclude

D′′∗ψνu→ D′′∗u.

So far, we have been able to approximate u by the compactly supported elements
ψνu. If we want ot obtain smooth approximants uν, we have to go through a regu-
larisation process, as explained in the beginning of the section.

These corollaries follow immediately.

Corollary 8. If the distance δ is complete, that the Hilbert adjoint (D′′H)
∗ and the hilbertian

extension of the formal adjoint (D′′∗)H coincide.

Corollary 9. The basic a priori inequality extends to arbitrary forms u such that

u ∈ L2, D′′u ∈ L2, D′′∗u ∈ L2.

We now introduce the reader to the notion of positivity for vector bundles.

Definition 10. Let E be a hermitian vector bundle over X. One says that

• E is Nakano positive if Θ̃ is positive definite;

• E is Griffiths positive if Θ̃(ξ⊗ v, ξ⊗ v) > 0 for all decomposable tensors ξ⊗ v ∈
TX⊗ E.

The second definition is included for completeness reasons, we will not need it
in the rest of the paper.

The following theorem is the central result of our exposition.

Theorem 11 (L2 existence theorem). Let X be a Kähler manifold and δ be complete. Let
E be a hermitian vector bundle over X and suppose A = [iΘ, Λ] > 0. Then for every form
g ∈ L2(X, Λp,qT∗X⊗ E) satisfying D′′g = 0 and∫

X
ĥ(A−1g, g) dV < ∞,

there exists f ∈ L2(X, Λp,q−1T∗X⊗ E) such that D′′ f = g and∫
X
| f |2 dV ≤

∫
X

ĥ(A−1g, g) dV.
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Proof. We start by considering the Hilbert space decomposition

L2(X, Λp,qT∗X⊗ E) = Ker D′′ ⊕ (Ker D′′)⊥.

Note that Ker D′′ is weakly closed, hence closed. If v ∈ D(X, Λp,qT∗X ⊗ E) is a
smooth form with compact support, we can write

v = v1 + v2

according to the above decomposition. Since (Ker D′′)⊥ ⊆ Ker D′′∗ by duality and
g, v1 ∈ Ker D′′ by hypothesis, we obtain D′′∗v2 = 0 and

|〈g, v〉|2 = |〈g, v1〉|2 = |〈AA−1g, v1〉|2 ≤ 〈A−1g, g〉〈Av1, v1〉

where the Cauchy-Schwarz inequality has been used.
The next step is applying the basic a priori inequality to u = v1:

〈Av1, v1〉 ≤ ‖D′′v1‖2 + ‖D′′∗v1‖2 = ‖D′′∗v1‖2 = ‖D′′∗v‖2.

By making use of both inequalities, we find

|〈g, v〉|2 ≤
(∫

X
ĥ(A−1g, g) dV

)
‖D′′∗v‖2

for every smooth (p, q)-form with compact support. Thus, we have defined a linear
functional

D′′∗(D(X, Λp,qT∗X⊗ E)→ C, w = D′′∗v 7→ 〈v, g〉.

This functional is continuous in L2 and its norm is bounded by a constant C, where

C =
(∫

X
ĥ(A−1g, g) dV

) 1
2
.

By the Hahn-Banach theorem, there is an element f ∈ L2(X, Λp,qT∗X ⊗ E) with
‖ f ‖ ≤ C, such that

〈v, g〉 = 〈D′′∗v, f 〉

for every v. We conclude that D′′∗ f = g in the sense of distribution, which is
sufficient. Note that the inequality ‖ f ‖ ≤ C is precisely the last estimate in the
statement of the theorem.

Remark 12. It is always possible to take a solution f which also satisifies the prop-
erty f ∈ (Ker D′′)⊥. It is sufficient to replace f by its orthogonal projection on
(Ker D′′)⊥. Clearly, this solution is unique and has minimal L2 norm in the set of
forms satisfying the equation D′′ f = g. Since

(Ker D′′)⊥ = Ran D′′∗ ⊆ Ker D′′∗,

we conclude that the minimal L2 solution satisfies the additional equation D′′∗ f = 0.
As a consequence,

∆′′ f = D′′∗D′′ f = D′′∗g.

Also note that if g is of class C∞, the ellipticity of ∆′′ automatically implies the
smoothness of f .

Our aim is to extend the main L2 theorem to the case of non-complete metrics (i.e.,
the induced distance δ is not complete). We briefly recall an important definition.

Definition 13. Suppose X be a complex manifold. A continuous function ψ : X → R

is called an exhaustion if the sets {z ∈ X | ψ(z) < c} are relatively compact for every
constant c.

Equivalently, ψ(z) → ∞ with respect to the filter of complements of compact
sets. The manifold X is weakly (resp. strongly) pseudoconvex if there exists a smooth
plurisubharmonic (resp. strongly plurisubharmonic) exhaustion function ψ on X.
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Examples of pseudoconvex manifolds include:

• compact complex manifolds (take ψ = 0);

• closed analytic submanifold of CN (take ψ(z) = |z|2);

• open balls B(z0, r) (take ψ(z) = 1/(r− |z− z0|2)).

Proposition 14. Every weakly pseudoconvex Kähler manifold X carries a complete metric.

Proof. Let ψ be a plurisubharmonic exhaustion function. The idea is to introduce a
slight modification of the fundamental form Ω:

Ω̂ = Ω + id′d′′(χ ◦ ψ) = Ω + i(χ′ ◦ ψ)d′d′′ψ + i(χ′′ ◦ ψ)d′ψ ∧ d′′ψ

where χ : R → R is a convex increasing function. The third term in the expression
of Ω̂ implies the norm of √

χ′′ ◦ ψ dψ

with respect to Ω̂ is less or equal than 1. Hence, if ρ is a primitive of
√

χ′′, we have
the inequality

|d(ρ ◦ ψ)|Ω̂ ≤ 1.

By integrating along paths, we see that

|ρ(ψ(x))− ρ(ψ(y))|Ω̂ ≤ δΩ̂(x, y)

for all x, y ∈ X. Therefore, the geodesic ball B(z0, r) ⊆ {z ∈ X | δΩ̂(z, z0) ≤
ψ(z0) + r} is relatively compact if ρ ◦ ψ is exhaustive, i.e., if

lim
t→+∞

ρ(t) = +∞.

Thus, we obtain the sufficient condition∫ +∞

t0

=
√

χ′′(t) = +∞,

which is realised (for example) by choosing χ(t) = t2.

Theorem 15. The L2 existence theorem still holds if the metric is not complete.

Proof. We developed the main ideas in the preceding proposition. If we apply the
theorem for the complete metrics associated to

Ω̂ = Ω + εid′d′′(ψ2) ε > 0,

we get solution forms fε, which are uniformly bounded in L2 norm. Since the close
unit ball of an Hilbert space is weakly compact, we can extract a subsequence

fεk → f ∈ L2

converging weakly in L2. By weak continuity of differentiations, by passing to the
limit we obtain the desired equality

D′′ f = g.
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3 vanishing theorems

The most important applications of L2 estimates are

• vanishing results for Dolbeaut cohomology groups;

• existence theorems for holomorphic functions;

• approximation theorems for holomorphic functions.

All three aspects are in fact intimately related, but a complete explanation of this
statement goes beyond the scope of the present exposition. Existence results are at
the heart of the solution of the celebrated Levi problem, which gives a characterisa-
tion of Stein manifolds in terms of strongly pseudoconvex manifolds.

As we will (partly) see, Stein manifolds enjoy a very strong vanishing theorem
about cohomology groups.

In the sequel we will prove three vanishing theorems. We are going to skip
some elementary (though somewhat laborious) calculations whose end result is that
A = [iΘ, Λ] is positive on the (n, q) forms under the hypothesis that E is Nakano
positive. The interested reader is invited to consult [Dem12, Chapter VII, Section
7]. Alternatively the reader may assume A > 0 in place of Nakano positivity in the
theorems below.

Theorem 16 (Nakano vanishing theorem). Let E be a Nakano positive holomorphic
vector bundle over a weakly pseudoconvex manifold X of dimension n. Then

Hn,q(X, E) = 0

for every q ≥ 1.

Proof. The L2 theorem shows that the equation D′′ f = g can be solved provided
that g is D′′-closed and satisfies a suitable bound. Moreover, we know that f is
smooth if g is smooth. We would like to solve the equation for a closed smooth
form, whatever is its behaviour at infinity. To this end, let ψ be a smooth exhuastive
plurisubharmonic function on X. If we multiply the metric of E by the weight factor

e−χ◦ψ,

where χ is as usual a convex increasing function, the resulting curvature tensor is
written

iΘχ = iΘ + id′d′′(χ ◦ ψ) = iΘ + i(χ′ ◦ ψ)d′d′′ψ + i(χ′′ ◦ ψ)d′ψ ∧ d′′ψ.

Note that positivity is preserved, more precisely the curvature operator Aχ on (n, q)
forms satisfies

Aχ ≥ A Aχ
−1 ≤ A−1,

hence we get ∫
X

ĥ(Aχ
−1g, g)e−χ◦ψ dV ≤

∫
X

ĥ(A−1g, g)e−χ◦ψ dV < +∞

when χ grows quickly enough, e.g., if χ is such that

e−χ(k)
∫
{k≤ψ≤k+1}

ĥ(A−1g, g) dV ≤ 2−k

for every integer k ≥ 0. This allows to get a smooth and minimal L2 solution f ,
which implies Hn,q(X, E) = 0 for q ≥ 1 as we wanted.

Theorem 17 (Cartan theorem B). Let E be a holomorphic vector bundle over a weakly
pseudoconvex manifold X. Then

Hp,q(X, E) = 0

for every q ≥ 1.
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Proof. We choose an arbitrary metric h′ on E. By the above formula for iΘχ, we see
that the curvature of E can be made positive if the first derivative of χ grows quickly
enough. As a consequence, we have the vanishing of the groups when p = n. To
obtain the general conclusion for (p, q)-forms, we use the canonical duality pairing

ΛkTX⊗ΛkT∗X → C,

and the contraction pairing

ΛnTX⊗ΛpT∗X⊗ E→ Λn−pTX.

These allow us to perform the following trick:

Λp,qT∗X⊗ E =Λ0,qT∗X⊗ΛpT∗X⊗ΛnT∗X⊗ΛnTX⊗ E

=Λn,qT∗X⊗ F

where F is defined as
Λn−pTX⊗ E.

Now just observe that the Dolbeaut complex Λp,•T∗X ⊗ E is isomorphic to the
Dolbeau complex Λn,•T∗X⊗ F, hence

Hp,q(X, E) = Hn,q(X, F) = 0.

Our last vanishing result concerns line bundles. There are missing details, which
can be filled by simple (but tedious-to-write) computations.

Theorem 18 (Kodaira-Serre vanishing theorem). Let E be a hermitian holomorphic
line bundle over a compact complex manifold X. Assume that Θ̃ > 0. Then for every
holomorphic vector bundle F, there exists an integer k0 = k0(F) such that

Hp,q(X, E⊗k ⊗ F) = 0

for every p ≥ 0, q ≥ 1, k ≥ k0.

Sketch of the proof. Given hermitian holomorphic vector bundles L, N, one can ex-
press the Chern connection of the tensor product in terms of the connections of E
and F. The resulting formula is the following:

DL⊗N(u⊗ v) = DLu⊗ v + (−1)deg uu⊗ DNv.

This easily implies
ΘL⊗N = ΘL ⊗ IdN + IdL⊗ΘN .

In the case of our line bundle E, we find, after the identification End(E) = C,

ΘE⊗k = kΘE,

hence
ΘE⊗k⊗F = kΘE ⊗ IdF +ΘF.

This means that the associated hermitian form satisfies

Θ̃E⊗k⊗F(η, η) ≥ k|η|2 + Θ̃F(η, η)

where iΘE is considered as the Kähler metric on X. Therefore, the bundle E⊗k ⊗ F
is Nakano positive for k ≥ k0 large enough, and we conclude

Hn,q(X, E⊗k ⊗ F) = 0

for q ≥ 1 and k ≥ k0. The case p 6= n is carried out by using the same trick of the
previous proof.
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