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introduction
The aim of this report is to prove the Oka-Cartan fundamental theorem, also known

as Cartan theorem B. The proof will closely follow the exposition in [Nog16].

Theorem. Let M be a Stein manifold, and let F be a coherent sheaf over M. Then we have

Hq(M,F ) = 0 q ≥ 1

The result relies on the proof of equivalent statements for manifolds of increasing
complexity:

• convex cylinder domains (step 2-3);

• analytic polyhedra (step 4);

• holomorphically convex domains (step 5);

• Stein manifolds (section 3);

As a corollary, in the last section we will prove

Theorem (Cartan theorem A). Let M be a Stein manifold and F a coherent sheaf over
M. Then F is spanned by finitely many global sections, i.e., for a suitable N ∈ N , the
following sequence is exact:

ON
M

// F // 0

Theorem (Analytic de Rham theorem). Let M be a Stein manifold of dimension n. Then
it holds that

Hq(M, C) ∼= Hq
AdR(M, C) q ≥ 0

In particular, Hq(M, C) = 0 when q > n.

On a general manifold the last result may fail as shown in subsection 1.3.
The Oka-Cartan fundamental theorem solves the first and the second Cousin

problem and it plays a key role in the GAGA correspondence.
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1 preparation
In the sequel, we will use the following conventions:

• OM is the sheaf of holomorphic functions over a complex manifold M;

• B(a, r) = {z ∈ Cn | |z− a| < r} is the ball centered at a of radius r;

• D(a, r) = {(z1, . . . , zn) ∈ Cn | |zi − ai| < ri, i = 1, . . . , n} is the polydisk
centered at a = (a1, . . . , an) of radius r = (r1, . . . , rn).

• Let f : M → N be a holomorphic map between complex manifolds. The
functor f ∗ is the inverse image functor in the category of OM-modules and
f∗ is the direct image functor in the category of ON-modules. More precisely,
given a OM-module F and a ON-module G,

f ∗G = f−1G ⊗ f−1ON
OM

f∗F (U) = F ( f−1(U)) ∀U open in N

( f ∗, f∗) is an adjoint situation, or f ∗ is left adjoint to f∗. For further details, the
reader is referred to [Dem12].

1.1 Coherent sheaves

In this subsection we recall some properties of coherent sheaves. For further
details, the reader is referred to [Nog16; Dem12].

Theorem 1 (Serre theorem). Let be given the short exact sequence of OM-modules

0 // F // G // H // 0

If two of the sheaves F ,G,H are coherent, then all three are coherent.

Theorem 2. Let F,G be coherent OM-modules over M. Then the tensor product

F ⊗OM G

is a coherent sheaf.

Let X be a closed complex submanifold of a complex manifold M. We denote
i : X ↪→ M the inclusion map.

Definition 3 (Geometric ideal sheaf). The geometric ideal sheaf is the kernel of the
surjection OM → i∗OM, defined by

OM(U)→ i∗OM(U) ∼= OX(U ∩ X) ∀U open in M

f 7→ f |X

Definition 4 (Simple extension of a sheaf). The simple extension of a sheaf F over X
is the direct image of F with respect to the inclusion map X ↪→ M. It is denoted
F̂ = i∗F .

If X = {a}, an OX-module over X is just a module over the ring C and its simple
extension is the skyscraper sheaf of that C-module centered in a. Furthermore, any
OM-module F supported on the point a is a skyscraper sheaf F̂a centered in a.
Indeed, sections of F over a neighbourhood of a are determined by their projection
in the stalk Fa of a, while they are identically zero over an open subset which does
not contain a.

Theorem 5. Let X be a closed complex submanifold of a complex manifold M. Then the
following propositions hold:
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• the geometric ideal sheaf IX of X is a coherent sheaf over M;

• the simple extension extension ÔX of the sheaf OX over M is coherent over M;

• the simple extension extension F̂ of a coherent sheaf F over M is coherent over M.

With the notation above,

Proposition 6. Hq(X,F ) ∼= Hq(M, F̂ ) q ≥ 0

Proof. Choose U a covering of M.

Cq(U , i∗F ) = ∏
(j0,...,jq)∈Aq+1

i∗F (Uj0 ∩ · · · ∩Ujq)

= ∏
(j0,...,jq)∈Aq+1

F (i−1(Uj0) ∩ · · · ∩ i−1(Ujq))

= Cq(i−1(U ),F )

The inverse image i−1(U ) is a covering of X, and since X is closed, any covering of
X can be considered as the restriction of a covering of M. Hence,

Hq(X,F ) ∼= Hq(M, i∗F ) q ≥ 0

since they are colimits of the same diagram.

Let f : M→ N be a biholomorphic map between complex manifolds.

Proposition 7. Hq(M,F ) ∼= Hq(N, f∗F̂ ) q ≥ 0

Proof. Choose V a covering of N. As in proposition 6,

Cq(V , f∗F ) = Cq( f−1(V),F )

The diagram of the coverings of N is isomorphic to the diagram of the coverings of
M via the inverse image of f . Hence,

Hq(M,F ) ∼= Hq(N, f∗F ) q ≥ 0

In general, let f : M → N be a holomorphic map between complex manifolds.
The right exactness of the inverse image functor f ∗ implies the coherence of the
sheaf f ∗G, where G is any coherent sheaf over N. If f is a biholomorphism, also the
direct image functor f∗ is right exact, hence f∗F is coherent for any coherent sheaf
F over M. By proposition 7,

Hq(M,F ) ∼= Hq(N, f∗F ) q ≥ 0

Therefore, in the case of biholomorphic manifolds M and N, we deduce the follow-
ing theorem.

Theorem 8. Suppose that Hq(N,G) = 0 for every coherent sheaf G over N. Then
Hq(M,F ) = 0 for every coherent sheaf F over M.

1.2 Holomorphic convexity

Our purpose is to prove the vanishing of some cohomology groups. It is natural
to deal with manifolds satisfying a property

1. invariant under biholomorphic maps;

2. stable under finite intersections.
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We require 1 as the vanishing property is also invariant under biholomorphisms,
and we require 2 because we need Leray coverings to work with Čech cohomology.
For the same reason, we will mainly deal with polydisks.

We will now introduce the basic notion of holomorphic convexity. For further
details, the reader is referred to [Nog16; Dem12].

Definition 9 (Holomorphic convex hull). Let M be a complex manifold and K ⊆ M
be a compact subset. The holomorphic convex hull of K is the set

K̂ = K̂O(M) = {z ∈ M | | f (z)| ≤ sup
K
| f (z)| ∀ f ∈ O(M)}

We list some elementary properties of the holomorphic convex hull.

1. K̂ is a closed set containing K;

2. ̂̂K = K̂;

3. K̂ contains all the relatively compact connected components of M r K;

4. if Ω is a domain in Cn, then K̂O(Ω) is contained in the convex hull of K;

5. if Ω1, Ω2 are domains in Cn, Ω1 ⊆ Ω2, then K̂O(Ω1)
⊆ K̂O(Ω2)

.

Since the convex hull of a compact set K in Cn is still compact, K̂O(Cn) is compact.
When Ω is arbitrary, K̂O(Ω) is not always compact. For example, if Ω = C2 r {0},
by Hartogs theorem O(Ω) = O(C2), hence the holomorphic hull of the sphere S3

is the non compact set Ŝ3 = B(0, 1)r {0}, as it is easily seen applying properties 1,
3 and 4 above.

Definition 10 (Holomorphic convexity). A complex manifold M is said to be holo-
morphically convex if the holomorphic hull K̂O(M) of every compact subset K ⊆ M is
compact.

Examples of holomorphically convex domains include:

• Any domain in C, as a consequence of Runge theorem.

• Any convex domain in Cn, by property 3 above.

• A convex cylinder domain in Cn (i.e., a product of n convex domains in C),
since it is biholomorphic to a polydisk. More generally, it is sufficient to
take a product of simply connected domains, thanks to the Riemann mapping
theorem.

On the other hand, for instance C2 r {0} is not holomorphically convex for the
aforementioned reasons. Using definition 10 and property 5, the following proposi-
tion is easily proved.

Proposition 11. Holomorphic convexity is invariant under biholomorphic mappings, and
stable under finite intersections.

1.3 Sheaf resolutions

By Poincaré lemma, ∂̄-Poincaré lemma, and holomorphic Poincaré lemma, the
following sequences are exact:

0 // R // E0
M

d // E1
M

// . . .

0 // Op
M

// E p,0
M

∂̄ // E p,1
M

// . . .

0 // C // OM = O(0)
M

∂ // O(1)
M

// . . .
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where E p, E p,q,O(p)
M denote respectively the sheaf of smooth p-forms, (p, q)-forms

and holomorphic p-forms. Since the first two resolutions are acyclic, the abstract de
Rham theorem implies

Hq
dR(M, R) ∼= Hq(M, R) q ≥ 0

Hp,q
∂̄

(M, C) ∼= Hq(M,O(p)
M ) q ≥ 0

In particular, for p = 1, the second resolution gives

H0,q
∂̄

(M, C) ∼= Hq(M,OM) q ≥ 0

By ∂̄-Poincaré lemma ([GH78, p.25]), if M is a polydisk (or any convex cylinder
domain), we conclude

Hq(M,OM) = 0 q ≥ 1

This is a particular case of the Oka-Cartan fundamental theorem.
Conversely, note that in general the third resolution above is not acyclic, and

Hq
AdR(M, R) 6∼= Hq(M, C). For example, let M be C2 r {0}. Taking the real tensor

product of the first resolution with the constant sheaf C, we obtain

Hq
dR(M, C) ∼= Hq(M, C) q ≥ 0

Since M is homotopy equivalent to the sphere S3, we obtain H3
dR(S

3) = C. But
clearly, H3

AdR(M, C) = 0, because M has complex dimension 2. We will prove in the
last section, as a corollary of the Oka-Cartan fundamental theorem, that the analytic
de Rham cohomology of Stein manifolds is isomorphic to the cohomology of the
constant sheaf C.

2 the fundamental theorem
Theorem 12 (Oka-Cartan fundamental theorem). Let Ω ⊆ Cn be a holomorphically
convex domain, and let F be a coherent sheaf over Ω. Then we have

Hq(Ω,F ) = 0 q ≥ 1

The proof is rather long, hence it is divided in several steps for ease of exposition.

step 1. Our first claim is: for an arbitrary sheaf F over any domain Ω, it holds that
Hq(Ω,F ) = 0, when q ≥ 22n.

Firstly, we choose a covering of Ω made of compact cubes {Eα}α∈A in Cn ∼=
R2n. Then we choose another covering {Uα}α∈A of relatively compact open
cubes such that Eα b Uα b Ω. Since Uα is relatively compact, it intersects a
finite number of cubes of the first covering, hence without loss of generality
we can suppose that Eα is the only cube completely contained in Uα.

Note that the neighbourhood of a vertex has non-empty intersection with
22n cubes (of the first covering) at maximum. Therefore, intersecting more
than 22n distinct cubes yields the empty set. Given a cochain ( fi0,...,iq) in
Cq({Uα},F ) = ∏(i0,...,iq)∈Aq+1 F (Ui0 ∩ · · · ∩Uiq), the cocyle condition implies
that, whenever two indices in {i0, . . . , iq} coincide, we must have fi0,...,iq = 0.
We conclude a q-cocycle is uniquely determined by sections over intersection
of q + 1 distinct open sets. This remark proves the claim.

step 2. Let Ω be a convex cylinder domain of complex dimension n. By 8, thanks
to the Riemann Mapping Theorem, we can assume that Ω is an open cube.
Let {Ων} be an exhaustion1 by relatively compact open cubes in Ω.

1 Let Ω be a manifold. An exhaustion of Ω is a collection of open subsets {Pν} such that Pν b Pν+1 and
Ω =

⋃
Pν.
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We want to prove that for any coherent sheaf F over Ω, Hq(Ων,F ) = 0, for q ≥ 1.

We denote by {Eνµ} a grid of finite compact cubes whose union is Ων. We
require the Eνµ to be so small that each of them is contained in an open set
Uνµ with the following properties:

• Eνµ b Uνµ;

• for a suitable Nνµ ∈ N , there exists an exact sequence

ONνµ

Uνµ

ϕνµ
// F|Uνµ

// 0

The existence of such Uνµ is guaranteed by the following reasoning: we apply
the definition of coherence to find open sets around each point in Ων, and then
we use Lebesgue number lemma to obtain a number δ, which we choose to be
the diameter of the cubes forming the grid. Applying Cartan merging lemma
([Nog16, lemma 4.2.17]), a finite generator system is found by glueing together
those for F (Uνµ) and F (Uνµ′) (which are provided by the exact sequence
above), where Uνµ and Uνµ′ are associated to adjoining cubes Eνµ and Eνµ′ .
Repeating this procedure (recall the number of Eνµ is finite), for a suitable
Nν ∈ N , we can construct an exact sequence

ONν
Uν

ϕν
// F|Uν

// 0 (1)

on a neighbourhood Uν of Ων. Hence, we obtain a short exact sequence

0 // ker ϕν
// ONν

Uν

ϕν
// F|Uν

// 0 (2)

Restricting to Ων, we have a long exact sequence

Hq(Ων,ONν
Ων

)→ Hq(Ων,F )→ Hq+1(Ων, ker ϕν)→ Hq+1(Ων,ONν
Ων

)

By Dolbeaut theorem, since Ων is a convex cylinder domain, we get

Hq(Ων,ONν
Ων

) = 0 q ≥ 1

therefore,
Hq(Ων,F ) ∼= Hq+1(Ων, ker ϕν) q ≥ 1

We have increased the degree of the cohomology group by one, which is the
key point in view of the vanishing property of step 1. By (2), ker ϕ is coherent
by Serre theorem 1. As a result, we proved that, given a coherent sheaf F
over a neighbourhood of Ων, we can find a second coherent sheaf F1 over a
possibly smaller neighbourhood of Ων, such that the following is true:

Hq(Ων,F ) ∼= Hq+1(Ων,F1) q ≥ 1

Iterating this procedure, we get a chain of isomorphisms

Hq(Ων,F ) ∼= Hq+1(Ων,F1) ∼= · · · ∼= H22n
(Ων,F22n−q) = 0

(q ≥ 1) where the last equality holds by application of step 1.

step 3. Until now, we proved Oka-Cartan fundamental theorem in the case of an
open cube and of a sheaf defined over a neighbourhood of its closure. To
deal with the general case, we need to glue together local solutions of the δ-
equation. We will correct local solutions with appropriate cocycles in order to
satysfy the glueing conditions.

Now, our goal is to prove that for any coherent sheaf F over a convex cylinder domain
Ω, Hq(Ω,F ) = 0, for q ≥ 1.
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Again, by the Riemann mapping theorem, we can assume that Ω is an open
cube. Let {Ωµ} be an exhaustion by relatively compact open cubes, and U =
{Uα}α∈A a locally finite open covering of Ω by relatively compact open cubes.

By step 2, since Ui0 ∩ · · · ∩ Uiq is still an open cube for every (i0, . . . , iq) ∈
Aq+1, Hq(Ui0 ∩ · · · ∩Uiq ,F ) = 0 for all q ≥ 1, which shows that U is a Leray
covering. We set Uν = {Uα ∩Ων}, which is a Leray covering of Ων, because
Uα ∩Ων is still a relatively compact open cube in Ω. Therefore, we obtain the
isomorphisms

Hq(Ω,F ) ∼= Hq(U ,F ) q ≥ 0

0 = Hq(Ων,F ) ∼= Hq(Uν,F ) q ≥ 1 (3)

by the property of Leray covering and step 2. In order to finish this step
of the proof, we need to show that, for every f ∈ Zq(U ,F ), we can find a
g̃ν ∈ Cq−1(Uν,F ) satisfying the following properties:

1. δ g̃ν = f |Ων
;

2. g̃ν;i0,...,iq = g̃ν−1;i0,...,iq for all (i0, . . . , iq) ∈ Aq+1 such that Ui0 ∩ · · · ∩Uiq ⊆
Ων−1.

In fact, by the sheaf axioms, we glue {g̃ν} a cochain g̃ ∈ Cq−1(U ,F ) such that
δ g̃ = f . As a consequence, [ f ] = 0 as wanted.

We analyse separately the case q ≥ 2 and q = 1 (in this order).

case q ≥ 2. Condition (3) implies there exist gν in Cq−1(Uν,F ) such that

f |Ων
= δ gν ν = 1, 2, . . . (4)

The following is a standard argument. We correct the defect gν − gν+1 on Ων

by the boundary of a cochain in Cq−2(Uν,F ), hence providing a variation g̃ν

of the sequence gν with the properties required. Note that since q ≥ 2, we
have enough room to decrease the degree of the cohomology by two units.
We emphasise that this process crashes down in the case q = 1, for which a
more substantial approximation argument is needed.

Set g̃1 = g1. Given an element g̃ν ∈ Cq−1(Uν,F ) with ν ≤ µ satisfying
properties 1 and 2 above, our aim is to construct a cochain g̃µ+1. By (4), it
holds that δ (g̃µ − g̃µ+1|Ωµ

) = 0, and there exists hµ+1 ∈ Cq−2(Uµ,F ) such
that

g̃µ − g̃µ+1|Ωµ
= δ hµ+1 (5)

We extend hµ+1 to a cochain h̃µ+1 ∈ Cq−2(U ,F ) as follows:

h̃µ+1;i0,...,iq−2 =

{
hµ+1;i0,...,iq−2 Ui0 ∩ · · · ∩Uiq−2 ⊆ Ωµ

0 else
(6)

We set
g̃µ+1 = gµ+1 + δ h̃µ+1|Ωµ+1

then, by definition of g̃µ+1 and (4)

δ g̃µ+1 = δ gµ+1 = f |Ωµ+1

If Ui0 ∩ · · · ∩Uiq−1 ⊆ Ωµ, then by definition of g̃µ+1, (6) and (5),

g̃µ+1;i0,...,iq−1 = gµ+1;i0,...,iq−1 + δ h̃µ+1;i0,...,iq−1

= gµ+1;i0,...,iq−1 + δ hµ+1;i0,...,iq−1

= g̃µ;i0,...,iq−1

which completes the construction of the required sequence.
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case q = 1. The case q = 1 requires a different approach that we outline below.

Lemma 13. Let E be a closed cube in a domain Ω contained in Cn, F a coherent
sheaf over Ω. There exists open neighbourhoods U, U′ of E, with U′ ⊆ U, such that
the following propositions are true:

1. F is spanned by finitely many global sections, i.e., for a suitable N ∈ N , the
following sequence is exact:

ON
U

// F|U // 0

2. F (U′) is spanned by finitely many global sections, i.e., for a suitable N ∈ N ,
the following sequence is exact:

ON(U′) // F (U′) // 0

Proof. We divide the proof in two parts.

1. This is an immediate consequence of step 2.

2. By the first part, restricting to U′, a relatively compact open cube such
that E b U′ b U, for a suitable N ∈ N we obtain a short exact sequence

0 // ker ϕ // ON
U′

ϕ
// F|U′ // 0

Note that ker ϕ is coherent by Serre theorem 1. Hence we have a long
exact sequence

H0(U′,ON
U′)

ϕ∗
// H0(U′,F ) // H1(U′, ker ϕ) = 0

where the last equality follows by step 2. The map ϕ∗ is onto, and this
remark concludes the proof.

Now we assume that gν is a (q− 1)-cochain on a neighbourhood of Ων, such
that

f = δ gν

is true on a neighbourhood of Ων. Set g̃1 = g1. We are going to define
inductively g̃ν on a neighbourhood of Ων. Assume that the elements g̃ν, 1 ≤
ν ≤ µ, are given. By (4), it holds that δ (gµ+1|Ωµ

− g̃µ) = 0, and there exists

sµ+1 on a neighbourhood of Ωµ such that

gµ+1|Ωµ
− g̃µ = sµ+1 (7)

By lemma 13, there exist a finite generator system {σ(ν)j}
Mν
j=1 of F , on a neigh-

bourhood of Ων. Moreover, any section sµ+1 can be expressed as a linear com-
bination of σ(µ+1)j with holomorphic coefficients a(µ+1)j defined on a neigh-
bourhood of Ωµ, by commutativity of the following diagram:

OMµ+1(Uµ+1)

��

// F (Uµ+1)

��

OMµ+1(Uµ) // F (Uµ) // 0
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(here Uν is an open neighbourhood of Ων). Explicitly, on a neighbourhood of
Ωµ,

sµ+1 =

Mµ+1

∑
j=1

a(µ+1)jσ(µ+1)j

By Runge approximation theorem for convex cylinder domains ([Nog16, the-
orem 1.2.23]), the holomorphic functions a(µ+1)j defined on a neighbourhood
of Ωµ are uniformly approximated in Ωµ by holomorphic functions ã(µ+1)j

defined on a neighbourhood of Ωµ+1, so that

‖a(µ+1)j − ã(µ+1)j‖Ωµ
= sup

z∈Ωµ

|a(µ+1)j(z)− ã(µ+1)j(z)| < ε

where ε will be determined later. We define the section s̃µ+1 of F on a neigh-
bourhood of Ωµ+1

s̃µ+1 :=
Mµ+1

∑
j=1

ã(µ+1)jσ(µ+1)j

and the 0-cochain g̃µ+1 on a neighbourhood of Ωµ+1

g̃µ+1 := gµ+1 − s̃µ+1

The following properties hold:

• δ g̃µ+1 = δ gµ+1 = f on a neighbourhood of Ωµ;

• g̃µ+1 − g̃µ = gµ+1 − s̃µ+1 − g̃µ = sµ+1 − s̃µ+1 on a neighbourhood of Ωµ.

We define
Gν := g̃ν + bν

where bν is an additive correction of g̃ν. We are going to investigate which
conditions should be imposed on bν such that Gν satisfies properties 1 and 2.
Firstly,

f |Ων
= δ Gν = δ g̃ν + δ bν = f |Ων

+ δ bν

which implies that bν should be a section of Ων. Secondly, Gν should satisfy

Gν+1|Ων
= Gν

Therefore,

Gν+1|Ων
= g̃ν+1 + bν+1 = g̃ν + g̃ν+1 − g̃ν + bν+1

= g̃ν + sν+1 − s̃ν+1 + bν+1

Gν = g̃ν + bν

which implies that bν should have the form

bν = sν+1 − s̃ν+1 + bν+1

bν =
∞

∑
λ=ν

sλ+1 − s̃λ+1

=
∞

∑
λ=ν

Mλ+1

∑
j=1

(a(λ+1)j − ã(λ+1)j)σ(λ+1)j

By lemma 13, on a neighbourhood of Ων,

σ(λ+1)j =
Mν

∑
k=1

α(λ+1,ν)jkσ(ν)k
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for some holomorphic functions α(λ+1,ν)jk defined on a neighbourhood of Ων.

F (Uλ+1)

��

OMν(Uν) // F (Uν) // 0

(here Uµ is an open neighbourhood of Ωµ). Hence,

bν =
∞

∑
λ=ν

Mλ+1

∑
j=1

(a(λ+1)j − ã(λ+1)j)
Mν

∑
k=1

α(λ+1,ν)jkσ(ν)k

=
Mν

∑
k=1

(
∞

∑
λ=ν

Mλ+1

∑
j=1

(a(λ+1)j − ã(λ+1)j)α(λ+1,ν)jk

)
σ(ν)k

The existence of such bν depends on the convergence of the coefficients of
σ(ν)k. In fact, they converge absolutely and uniformly on Ων, for instance if
we choose ε small enough such that

∞

∑
λ=ν

Mλ+1

∑
j=1
‖(a(λ+1)j − ã(λ+1)j)α(λ+1,ν)jk‖Ων

<
1

2λ

for fixed λ and 1 ≤ ν ≤ λ, which concludes the proof.

step 4.

Definition 14 (Analytic polyhedron). Let Ω ⊆ Cn be a domain. Let { f j}m
j=1 be

a finite collection of holomorphic maps Ω→ C. The set

P := {z ∈ Ω | | f j(z)| < 1, 1 ≤ j ≤ m}

is called a O(Ω)-semianalytic polyhedron. A union of finitely many relatively
compact connected components of P is called a O(Ω)-analytic polyhedron. The
functions { f j}m

j=1 will be called the defining functions of P.

Analogously, we can define aO(M)-analytic polyhedron when M is a complex
manifold.

We need to prove that for any coherent sheaf F over an analytic polyhedron P
in a domain Ω (semianalytic polihedron contained in a convex cylinder domain),
Hq(P,F ) = 0, for q ≥ 1.

Let { f j}m
j=1 be the analytic functions defining P. Since P is bounded (relatively

compact in Cn), there exists a polydisk ∆ containing P.2 The Oka map is the
holomorphic embedding

ιP : P→ ∆× D(0, 1)m

z 7→ (z, f1(z), . . . , fm(z))

The image ι(P) is a closed complex submanifold of the polydisk ∆×D(0, 1)m.

Indeed, as | f j| = 1 on the boundary points of P for some j ∈ {1, . . . , m},
ι(∂P) ⊆ ∂(∆ × D(0, 1)m), moreover since ι extends continuously to a map
P → ∆× D(0, 1)m, P is sent to a compact (hence closed) set. Now, taking
the intersection ι(P) ∩ ∆× D(0, 1)m = ι(P), we see that ι(P) is closed in ∆×
D(0, 1)m.

2 Here, we can drop the relative compactness assumption, just requiring that P belongs to a convex cylin-
der domain. This allows us to extend the result to a semianalytic polihedron contained in a convex
cylinder domain.
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Identifying P with its image via ι, we are now able to take the simple extension
sheaf F̂ over ∆×D(0, 1)m, which is still coherent by 5. Applying step 3 to the
convex cylinder domain ∆× D(0, 1)m, we get

Hq(∆× D(0, 1)m, F̂ ) = 0 q ≥ 1

By 6, Hq(P,F ) ∼= Hq(∆× D(0, 1)m, F̂ ). This terminates the fourth step.

step 5. We begin with a technical lemma.

Lemma 15. A holomorphically convex domain Ω admits an exhaustion by O(Ω)-
analytic polihedrons.

Proof. Since Ω is a connected domain in Cn, hence second countable and lo-
cally compact, it admits an exhaustion {Vν} by compact connected subsets.

By definition of holomorphically convex domain, the holomorphic hull V̂1 of
V1 in Ω is compact. We choose a relatively compact open neighbourhood W
of V1. We have a chain of inclusions

V1 b V̂1 b W b Ω

By definition of holomorphic hull, for each a ∈ ∂W, since a /∈ V̂1, there exists
a function f ∈ O(Ω) such that

sup
V̂1

| f | < | f (a)|

For a certain θ ∈ R,
sup

V̂1

| f | < θ < | f (a)|

By continuity, in a neighbourhood Ua of a,

sup
V̂1

| f | < θ < | f (z)| ∀z ∈ Ua

Eventually rescaling f , we can suppose

sup
V̂1

| f | < 1 < | f (z)| ∀z ∈ Ua

Since the boundary of W is compact (the boundary of W can be covered by a
finite number of Ua), there exists a finite number of f j ∈ O(Ω), j = 1, . . . , m,
such that

V̂1 ⊆ P := {z ∈ Ω | | f j(z)| < 1, 1 ≤ j ≤ m}

Therefore, the connected component P1 of P containing V1, is an analytic poly-
hedron such that

V1 b P1 b W

Iterating the procedure for Vν2 , with ν2 large enough such that P1 ∪V2 ⊆ Vν2 ,
we obtain an exhaustion of Ω by analytic polyhedra Pν.

We state our claim: for any coherent sheaf F over a holomorphically convex domain
Ω, Hq(Ω,F ) = 0, for q ≥ 1.

Basically, we are going over the argument proposed in step 3, with a few
changes. Let {Pµ} be an exhaustion by analytic polyhedra of Ω, and U =
{Uα}α∈A a locally finite open covering of Ω by relatively compact convex
cylinder domains. By step 2, since Ui0 ∩ · · · ∩ Uiq is still a convex cylinder
domaim for every (i0, . . . , iq) ∈ Aq+1, Hq(Ui0 ∩ · · · ∩Uiq ,F ) = 0 for all q ≥ 1,
which shows that U is a Leray covering.
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We set Uν = {Uα ∩ Pν}, which is a Leray covering of Pν. Indeed, if Uα ⊆ Pν,
then Uα ∩ Pν = Uα is a convex cylinder domain, otherwise that intersection is
a semianalytic polyhedron in a convex cylinder domain. By step 2 and step 4,
U is a Leray covering as claimed. Therefore, we obtain the isomorphisms

Hq(Ω,F ) ∼= Hq(U ,F ) q ≥ 0

0 = Hq(Pν,F ) ∼= Hq(Uν,F ) q ≥ 1

by the property of Leray covering and step 4. In order to finish this step
of the proof, we need to show that, for every f ∈ Zq(U ,F ), we can find a
g̃ν ∈ Cq−1(Uν,F ) satisfying the following properties:

• δ g̃ν = f |Pν ;

• g̃ν;i0,...,iq = g̃ν−1;i0,...,iq for all (i0, . . . , iq) ∈ Aq+1 such that Ui0 ∩ · · · ∩Uiq ⊆
Pν−1.

In fact, by the sheaf axioms, we glue {g̃ν} a cochain g̃ ∈ Cq−1(U ,F ) such that
δ g̃ = f . As a consequence, [ f ] = 0 as wanted.

Again, we have two cases: q ≥ 2 and q = 1. The first one follows easily by
replacing Ων by Pν in the (q ≥ 2)-case given in step 3. The case q = 1 requires
a different kind of approximation argument that we outline below.

Lemma 16. Let P be an analytic polyhedron in a domain Ω contained in Cn, let F a
coherent sheaf over Ω and U an open neighbourhood of P. The following propositions
are true:

1. F is spanned by finitely many global sections, i.e., for a suitable N ∈ N , the
following sequence is exact:

ON
U

// F|U // 0

2. F (P) is spanned by finitely many global sections, i.e., for a suitable N ∈ N ,
the following sequence is exact:

ON(P) // F (P) // 0

Proof. We divide the proof in two parts.

1. Let { f j}m
j=1 be the analytic functions defining P. Recall that P is a finite

union of relatively compact connected components of

{z ∈ Ω | | f j(z)| < 1, 1 ≤ j ≤ m}

For ε > 0, we define P̃, a small perturbation of P, i.e., the union of
connected components of

{z ∈ Ω | (1− ε)| f j(z)| < 1, 1 ≤ j ≤ m}

which contains a point of P. We can choose ε small enough such that

P b P̃ b Ω

We allow the following identifications:

• F is identified with F|P̃;

• P̃ is identified with its image via the Oka map ιP̃,

ιP̃ : P̃→ ∆× D(0, 1)m

z 7→ (z, (1− ε) f1(z), . . . , (1− ε) fm(z))

with P̃ contained in the polydisk ∆;
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• ∆×D(0, 1)m is identified with an open cube R via the Riemann map-
ping theorem.

The simple extension F̂ of F over R is coherent by 5 (note that P̃ is a
closed complex submanifold of R, hence F̂ is well defined). Since P is
relatively compact in R, there exists an open cube E such that P ⊆ E ⊆ R.
By step 2, for a suitable N ∈ N we obtain the following exact sequence:

ON
V

// F̂ |V // 0

on a neighbourhood V of E. Restricting to U := V ∩ P̃, we obtain the
sequence stated in the claim.

2. This proof proceed as in lemma 13, replacing the open neighbourhood
U′ by the analytic polyhedron P.

We need one more lemma.

Lemma 17 (Runge-Oka approximation). Let P be an analytic polyhedron in a
domain Ω contained in Cn. Every holomorphic function defined over P is arbitrarily
approximated uniformly on compact subsets of P by elements in O(Ω).

Proof. Let the Oka map of P be

ιP : P→ ∆× D(0, 1)m =: ∆′

z 7→ (z, f1(z), . . . , fm(z))

where { f j}m
j=1 are the analytic functions defining P. As in definition 3, we are

given the short exact sequence

0 // IP // O∆′
// ÔP // 0

where as usual we identify P with its image ιP(P). The following long exact
sequence is exact

H0(∆′,O∆′) // H0(∆′, ÔP) ∼= H0(P,OP) // H1(∆′, IP) = 0

where the last equality holds by coherence of IP and step 3. More explicitly,

O(∆′) // O(P) // 0

It follows that, for any f ∈ O(P), there exists a holomorphic function F ∈
O(∆′) such that F|P = f . We expand F(z, w) (where (z, w) ∈ ∆× D(0, 1)m) in
power series,

F(z, w) = ∑
α,β

aαβzαwβ

For every compact subset K in P, and ε > 0, it exists N ∈N such that

|F(z, w)− ∑
|α|,|β|<N

aαβzαwβ| < ε ∀(z, w) ∈ K ⊆ ∆′

Replacing w with h = ( f1, . . . , fm), we get

| f (z)− ∑
|α|,|β|<N

aαβzαhβ(z)| < ε ∀(z, w) ∈ K ⊆ P ⊆ Ω

Since ∑|α|,|β|<N aαβzαhβ(z) ∈ O(Ω), the result holds.

At this point, the proof of the (q = 1)-case proceeds as in step 3, replacing
open cubes Ων with analytic polyhedra Pν and Runge approximation with
Runge-Oka approximation.

This was the final step, so the proof is complete.
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3 stein manifolds
We begin with a definition.

Definition 18. Let M be a complex manifold of dimension n. M is a Stein manifold if

• (holomorphic separability) for any two points x, y ∈ M with x 6= y, there
exists f ∈ O(M) such that f (x) 6= f (y);

• (globally defined holomorphic local charts) M admits a complex atlas of the
form {(Uα, ϕα)}α∈A, where ϕα ∈ O(M)n for all α ∈ A;

• (holomorphic convexity) M is holomorphically convex.

Any holomorphically convex domain of Cn is a Stein manifold. On the contrary,
although compact complex manifolds are trivially holomorphically convex, glob-
ally defined holomorphic functions don’t separate points, since by the maximum
principle they are constant sections. Hence, compact manifolds are not Stein.

Lemma 19. Let P be a relatively compact open subset of a Stein manifold M. Then there
exists an injective immersion of P in a polydisk of dimension large enough.

Proof. Let M be endowed with a complex atlas made up of globally defined holo-
morphic local charts. By compactness of P, we can extract from the atlas a finite
open covering {Uα}l

α=1 of P, with associated coordinate charts {ϕα}l
α=1. Fix x ∈ P.

By holomorphic separability of M, for all y ∈ P r {x}, there exists a function
fxy ∈ O(M), such that fxy(x) 6= fxy(y). By continuity of fxy, there exist open
neighbourhoods Axy of x and Bxy of y, such that fxy(Axy) ∩ fxy(Bxy) = ∅.

We can suppose Axy ⊆ Uα and Bxy ⊆ Uβ for some α, β ∈ {1, . . . , l}. The collection
{Axy ∪ Bxy}y∈P is an open covering of P. Again, we extract a finite covering {Axyµ ∪

Bxyµ}
m(x)
µ=1 . We define

Ax =
m(x)⋂
µ=1

Axyµ

The family {Ax}x∈P is an open covering of P. We extract a finite covering {Axν}n
ν=1.

We define the map f : P→ CN by

f (z) = (ϕ1(z), . . . , ϕl(z), fx1y1(z), . . . , fx1ym(x1)
, . . . , fxny1 , . . . , fxnym(xn)

)

Claim: the map f is injective.
Suppose that z, w ∈ P, z 6= w, such that f (z) = f (w). Since {Axν}n

ν=1 is a covering
of P, z ∈ Axν for some ν ∈ {1, . . . , n}. Recall that

Axν =
m(xν)⋂
µ=1

Axνyµ

If w belongs to Axνyµ for some µ ∈ {1, . . . , m(xν)}, then, since also z ∈ Axνyµ , w, z
are in the same coordinate open Uα for some α ∈ {1, . . . , l}. Hence ϕα(z) 6= ϕα(w),
which is a contradiction. As a consequence, since {Axνyµ ∪ Bxνyµ}

m(xν)
µ=1 is an open

covering of P, w belongs to Bxνyµ for some µ ∈ {1, . . . , m(xν)}. Hence fxνyµ(z) 6=
fxνyµ(w), which is a contradiction. Our claim is proved.

By continuity of f , the image of P is relatively compact in CN , therefore contained
in a polydisk ∆ of suitable radius. Since the functions ϕα are local charts of P, f |P
is an injective immersion.

Now consider an analytic polyhedron P in M, the Oka map of P, defined as

ιP : P→ ∆× D(0, 1)m

z 7→ ( f (z), f1(z), . . . , fm(z))
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where f is the injective immersion of lemma 19 and { f j}m
j=1 are the analytic func-

tions defining P. As in step 4, it is a closed immersion, hence an embedding.

Remark 20. A stronger result, which will not be proved in these notes, is that every
Stein manifold is embeddable in CN for N large enough.

Theorem 21 (Oka-Cartan fundamental theorem on Stein manifolds). Let M be a Stein
manifold, and let F be a coherent sheaf over M. Then we have

Hq(M,F ) = 0 q ≥ 1

Proof. There is a locally finite open covering U = {Uα}α∈A such that every Uα is
biholomorphic to a holomorphically convex domain. Indeed, M is locally biholo-
morphic to an open in Cn (dim M = n), and the inverse image of any holomorphic
convex domain (e.g., a polydisk) via local charts is still a holomorphic convex do-
main by 11.

Since a connected component of a finite intersection of Uα is a holomorphically
convex domain (by 11), U is a Leray covering with respect to any coherent sheaf.
Note that the exhaustion argument proposed in Lemma 15 relies exclusively on the
holomorphic convexity of Ω, hence it still holds for M.

By the same token, the results shown in step 4 and 5 for analytic polyhedra in a
holomorphic convex domain, remain true for analytic polyhedra in a Stein manifold.
Indeed, also in this setting, the Oka map and the holomorphically convex Leray
covering of M are given.

Some corollaries of the Oka-Cartan fundamental theorem are shown below.

Corollary 22 (Analytic de Rham theorem). Let M be a Stein manifold of dimension n.
Then it holds that

Hq(M, C) ∼= Hq
AdR(M, C) q ≥ 0

In particular, Hq(M, C) = 0 when q > n.

Proof. In the case of Stein manifolds, the following resolution of the constant sheaf
C is acyclic:

0 // C // OM = O(0)
M

// O(1)
M

// . . . // O(n)
M

// 0

Indeed, O(µ)
M are locally free sheaves over OM, hence coherent. By Oka-Cartan

fundamental theorem, Hq(M,O(µ)
M ) = 0 for q ≥ 1 and µ ≥ 0. The claim follows

from the abstract de Rham theorem.

Corollary 23 (Cartan theorem A). Let M be a Stein manifold and F a coherent sheaf
over M. Then F is spanned by finitely many global sections, i.e., for a suitable N ∈ N , the
following sequence is exact:

ON
M

// F // 0

Proof. Let X be a closed complex submanifold of M, the following sequence is exact:

0 // IX // OM // OM/IX // 0

Let X = {a}. Tensoring with the OM-coherent sheaf OM, we obtain the following
exact sequence of coherent sheaves by 2:

I{a} ⊗OM F // OM ⊗OM F ∼= F // OM/I{a} ⊗OM F // 0

Let K denote the kernel of the map F → OM/I{a} ⊗OM F ∼= F/I{a}F . Moreover,
observe that if x 6= a, since I{a},x = OM,x,(

F/I{a}F
)

x
= 0
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and if x = a, (
F/I{a}F

)
a
= Fa/maFa

where ma is the maximal ideal of the local ring OM,a. Hence F/I{a}F is the

skyscraper sheaf ̂Fa/maFa centered in a. By Serre theorem 1, K is coherent, and
the following short exact sequence holds:

0 // K // F // F/I{a}F // 0

We obtain the long exact sequence

H0(M,F ) // H0(M, ̂Fa/maFa) // H1(M,K) = 0

where the last equality holds by the Oka-Cartan fundamental theorem. More ex-
plicitly,

F (M) // Fa/maFa // 0

The surjectivity of this map implies there exist finitely many global sections of F (M)
such that their image span Fa/maFa (which is a finitely generated OM,a-module by
coherence of F ). By Nakayama lemma, the same sections are generators of Fa.

Remark 24. In the literature, the previous result is commonly known as Cartan the-
orem A. On the other hand, the Oka-Cartan fundamental theorem is usually called
Cartan theorem B. Any locally finite OM-module (e.g., a coherent sheaf) is spanned
by local sections ([Nog16, Prop 2.4.6, Point-Local Generation]). For coherent sheaves
over Stein manifolds, Cartan theorem A proves “global-point generation”.
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